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Abstract

The determination of the appropriate boundary conditions for a two-dimensional theory of elastic flat plates (and

shells) consistent with the expected order of accuracy of the theory is both critical and challenging. The reciprocal

theorem of elasticity will be applied in a novel way to obtain the appropriate stress boundary conditions for plate

bending accurate to all order (with respect to the usual dimensionless thickness parameter) for plates of general edge

geometry and loading. Kirchhoff�s two contracted stress boundary conditions are shown to be consistent with a leading
term (thin plate) approximation theory, but the more general results obtained herein are needed for higher order

theories.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Even with today�s computing power, an accurate numerical solution for three-dimensional elastostatics
of plate and shell structures is often impractical and sometime infeasible. When it is practical, a relatively

simple approximate analytical solution for the same problem is often desirable as it allows us to see more

clearly how the behavior of the structure depends on the relevant design parameters. Plate and shell theories

have been developed over the years to provide ways to obtain such approximate solutions away from the
edges of thin structures. From the results of Gregory and Wan (1984, 1985a) and Lin and Wan (1988), we

have now explicit examples showing that the higher order accuracy offered by the governing differential

equations of a higher order plate or shell theory (with respect to a small dimensionless thickness parameter

e) may not be attained unless commensurate boundary conditions are developed and used for these
equations. These boundary conditions have now been developed for plate and shell problems with special

edge geometries or restricted loading conditions (see Gregory and Wan, 1984, 1985a,b, 1988, 1993; Gregory

et al., 1998). The present paper obtains the appropriate boundary conditions for the Levy (interior) solution

for plate bending, and hence a two-dimensional plate theory of any order of accuracy, subject to general
admissible edge tractions at an edge with a general contour. (The same general technique applies also to

other types of admissible edge conditions as well.) The classical Kirchhoff contracted stress boundary
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conditions for thin plates (Love, 1944; Koiter, 1964) are shown to be consistent with the leading term

asymptotic approximation of the stress boundary conditions obtained. Modifications of the Kirchhoff

contracted conditions by the new and more general results herein will generally be necessary for a higher

order plate theory.
2. Interior and boundary layer solution

For the purpose of developing appropriate boundary conditions for the plate bending problem, it suffices

to consider a homogeneous, isotropic, linearly elastic plate bounded by two flat faces at z ¼ �h, and an
edge, E, spanning the cylindrical surface ff ðx; yÞ ¼ 0; �h6 z6 hg (see Fig. 1). The plate is subject to no
interior body loading and no surface tractions at the two faces so that
rzxðx; y;�hÞ ¼ rzyðx; y;�hÞ ¼ rzzðx; y;�hÞ ¼ 0 ð1Þ

for all ðx; yÞ inside the simple edge curve C defined by f ðx; yÞ ¼ 0, which does not cross itself. Here n and t
are in the direction normal and tangent to the edge curve C, respectively. The edge E itself is subject to a
prescribed set of admissible tractions so that
rnn ¼ �rrnnðh; zÞ; rnt ¼ �rrntðh; zÞ; rnz ¼ �rrnzðh; zÞ; ð2Þ

along E, where the barred quantities are the prescribed tractions along the edge E and where h is an
edgewise variable along C (such as the angular variable of the polar coordinate system in the case of a
circular edge). There are no restriction on the prescribed admissible tractions along E except that they give
rise only to plate bending (with the in-plane stress components being odd in z and the transverse shear
component being even in z). The case of plate stretching has already been analyzed by Gregory and Wan
(1988).

It has been known since the work of Levy (1877) that there is an exact solution of the equations of three-

dimensional elasticity theory that is traction free at the two faces of the plate. The expressions for the stress

and displacement fields of the plate bending portion of this solution given in terms of a two-dimensional
biharmonic (mid-plane transverse displacement) function wðx; yÞ can be found in Gregory and Wan
(1985a). We will give here in polar coordinates only the six quantities needed in the subsequent analysis:
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Fig. 1. A simply-connected flat plate.
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Here E is Young�s modulus of elasticity (distinguished by the context from the same symbol used for the
plate edge), m is Poisson�s ratio, and
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with r2r2w ¼ 0: ð9Þ
The general single-valued solution for wðr; hÞ bounded throughout the plate�s mid-plane is given by the
following Fourier series in the polar angle h:
wðr; hÞ ¼
X1
n¼1

fðanrn þ bnrnþ2Þ cosðnhÞ þ ðcnrn þ dnrnþ2Þ sinðnhÞg þ fa0 þ b0r2g ð10Þ
Evidently, the Levy solution reduces to the Kirchhoff thin plate (approximate) solution if terms involving

r2w are omitted in the displacement fields and the in-plane stress fields. (These terms are of higher order in
h=a compared to other terms in the same expressions, with a being a representative length of the plate span
such as the radius of the circular contour in the case of a circular plate edge.) Similar to the Kirchhoff

solution, the Levy solution�s simple dependence on the thickness coordinate z makes it generally incapable
of satisfying all the prescribed edge conditions along E; hence, it is only a particular solution of the
equations of elasticity. The asymptotic analysis of Friedrichs and Dressler (1961), Gol�denveizer (1962), and
Gol�denveizer and Kolos (1965) showed that (1) the complete outer (asymptotic expansion of the exact)

solution for the equations of three-dimensional elasticity that is stress free on the two plate faces telescopes

to become Levy�s exact solution, and (2) the residual between the exact solution and the Levy solution
consists of only boundary layer phenomena. Such boundary layer residual solution components decay
exponentially away from the edge of the plate and become insignificant at a distance large compared to the

thickness of the plate. We define an elastostatic state of the plate to be a boundary layer (or a decaying) state

if its displacement and stress fields fu; rg satisfy the condition
fu; rg ¼ OðMe�ca=hÞ as h ! 0 ð11Þ
for some maximum modulus M of the prescribed edge tractions, and a positive constant c. (Though the
results of this paper does not depend on the actual value of c, we know from the various special cases that c
is greater than unity.) An elastostatic state of the plate is said to be a regular state if its displacement and

stress fields have at worst an algebraic growth (in the parameter e ¼ h=a) as h ! 0. More recently, Gregory
(1992) proved that the exact solution of the plate problem is in fact the sum of the Levy solution and

boundary layer residual solution components of the Papkovich–Fadle type:
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fu; rg ¼ fuI; rIg þ fud; rdg ð12Þ
with the superscript �I� indicating the fact that the elastostatic fields are significant throughout the interior of
the plate while the superscript �d� indicating decaying elastostatic states. If truncated asymptotic expansions
in a small thickness parameter e ¼ h=a should be used for the various elastic fields, we would indicate this by
fu; rg � fuo; rog þ fuL; rLg ð13Þ
where the superscripts �o� (for outer) and �L� (for layer) indicate truncated asymptotic expansions of the
exact solution with respect to the (previously defined) parameter e. It is important to note here that fuL; rLg
is generally not smaller than OðeÞ compared to fuo; rog.
The combination of interior and decaying solution components is known to be capable of fitting any

admissible set of prescribed edge conditions along the plate edge E (Gregory, 1979, 1980a,b, 1992). Hence
boundary value problems of the elastostatics of flat plates are solved in principle. In fact, examples of such

solutions for specific boundary value problems can be found in Gregory and Wan (1984), Lin and Wan

(1993) and Gregory et al. (1997, 1998, 2001). However, for most plate geometries and edge loadings, so-
lutions by eigenfunction expansions of the decaying component are also often not feasible or practical. We

are therefore forced to return to the Kirchhoff type approach of determining only the exact or asymptotic

interior solution without calculating the boundary layer solution components as well. In this context, the

following question arises naturally: What portion of the prescribed edge data should be assigned to the

interior solution (with the balance going to the residual decaying solution components)? Equivalently, what

conditions must the residual edge data satisfy in order for it to induce only a decaying solution state? The

answer to either one of these two questions would enable us to determine the interior solution of the plate

without any reference to the supplementary boundary layer states which are much more difficult to obtain.
For the case of stress data prescribed along the edge E, such an assignment of edge data is usually made

by means of a modified form of Saint Venant�s principle requiring that the Levy type plate theory solution
and the prescribed edge stresses have the same transverse shear resultant and (the bending and twisting)

moment resultants (Love, 1944; Timoshenko and Goodier, 1951; Reissner, 1963). We put aside for the

moment the issue that the three resultant conditions are one too many for the interior solution governed by

the fourth order biharmonic equation and the appropriateness of the resolution of this predicament by

Kirchhoff�s contraction of the three stress boundary conditions into two conditions. There are still a
number of questions and issues regarding this modified Saint Venant principle approach that need to be
addressed:

First, Saint Venant�s principle is, strictly speaking, not applicable to our plate bending problem since the
typical linear span of the loaded area is not small compared to the characteristic dimension of the plate.

More specifically, the circumference of the loaded edge E is not small compared to a representative span of
the plate. Why then should a modified form of this principle, taking resultants across thickness only, be

expected to be appropriate for our plate problem?

Second, Saint Venant�s principle itself was proved only for some very restricted geometries and loading
conditions which do not include the plate bending problem (see Horgan and Knowles, 1983; Horgan, 1989).
If Saint Venant�s conjecture or its modified form is expected to be applicable to the plate problem, can we
prove that it is in fact ‘‘appropriate’’ and deduce also the kind of accuracy (in terms of the small parameter

h=a) we can expect from this approach?
Third, if the edge conditions are specified in terms of the displacement components or a mixture of

stresses and displacements, Saint Venant�s principle, even if it should be applicable, is not useful (since not
all edge stresses are known); how do we make the proper assignment of the edge data in these cases?

Finally, we recall that the Kirchhoff contracted stress boundary conditions were originally obtained by a

physical argument. Later, Kelvin and Tait derived them mathematically by the direct method of calculus of
variations on the basis of certain assumed displacement distributions across the plate thickness (Thomson
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and Tait, 1867; Love, 1944). More recently, Koiter show that the (exact) two-dimensional differential

equations of equilibrium (for both plates and shells) may be re-written, without any approximation, in

terms of a set of alternative stress resultant and couple variables such four of these correspond to the four

prescribed stress measures of the four Kirchhoff contracted boundary conditions. It is clear from Koiter�s
analysis that, even from a strictly mathematical viewpoint, the solution of Kirchhoff�s plate theory provides
only an approximation of a ‘‘(more) complete’’ two-dimensional plate theory (such as a plate theory with

transverse shear deformability, see Reissner, 1985). In relation to the exact three-dimensional elasticity

solution, do these contracted conditions in fact lead to a degree of accuracy in the approximate solution

consistent with the accuracy expected of the Kirchhoff plate theory or, more generally, of the particular set

of plate equations adopted for the analysis?

Some of these questions have been answered for special classes of problems in references cited above.

They will be addressed in the following sections for the general plate bending problem considered herein.
3. Reciprocal theorem of elasticity

A general approach has been developed by Gregory and Wan (1984, 1985a, 1988) to properly assign a

portion of the edge data to the interior solution to avoid a simultaneous determination of the boundary

layer solution components for thin elastic bodies. The approach is based on the reciprocal theorem of

elasticity. We take the first state in this theorem to be the exact solution of the plate bending problem and

denote it by a superscript �(1)�. For the second state, denoted by superscript �(2)�, we take a solution of the
elasticity equations for the same plate domain (possibly leaving out a small neighborhood of a solution
singularity) with no body loads, no face tractions at z ¼ �h, and no edge tractions along E. With these two

elastostatic states, we apply the reciprocal theorem to a portion of our plate from the edge E inward to the
edge of the a fictitious circular hole of radius q centered at a point (possibly a state 2 singularity) sufficiently
far away from the edge E, with a minimum distance d 
 h (see Fig. 2). In that case, the reciprocal relation
takes the form
Z Z

E
f�rrnnuð2Þn þ �rrntuð2Þt þ �rrnzuð2Þz gdS ¼

Z Z
Eq
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rz uz�gdS

ð14Þ

Note that (i) there are no volume integrals in this relation because there are no body loads in the plate

interior; (ii) there are no surface integrals over the faces because of the traction free conditions of both
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Fig. 2. A simply-connected flat plate with a fictitous circular hole.
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elastostatic states on these faces; (iii) a second surface integral over E on the left vanishes because of the
traction free conditions of state (2) along E; (iv) the superscript (1) for state (1) has been omitted on the
right side to emphasize the fact state (1) is the exact solution of the original problem; and (v) the stress

components of state (1) along E on the left must be equal to the prescribed edge stresses and have been
written in terms of these prescribed quantities instead.

Except for three rigid body displacements and rotations, the only possible non-trivial state (2) for no

interior loading that is also stress free on the two faces and along the edge E must be singular somewhere in
the interior of the plate. There are four families of such singular solutions with their only singularity at the

center of the fictitious circular hole, r ¼ 0, generated by the following singular biharmonic mid-plane
transverse displacement fields by way of Levy�s formulas for stresses and displacements:
wkcðr; hÞ ¼ W kc
0 r�k cosðkhÞ; wksðr; hÞ ¼ W ks

0 r�k sinðkhÞ ð15Þ

wk0cðr; hÞ ¼ W k0c
0 r�kþ2 cosðkhÞ; wk0sðr; hÞ ¼ W k0s

0 r�kþ2 sinðkhÞ ð16Þ
where the multiplicative constants W mq
0 may be chosen as appropriate factors that make the four families of

generating function dimensionless. For a circular plate of radius a, we may choose W kc
0 ¼ W ks

0 ¼ ak and
W k0c
0 ¼ W k0s

0 ¼ ak�2. However, since our final results do not depend on the dimension of the singular
biharmonic functions, we will setW kc

0 ¼ W ks
0 ¼ W k0c

0 ¼ W k0s
0 ¼ 1 in all subsequent developments for simplicity.

For a fixed kP 2, any one of these four singular biharmonic (mid-plane transverse displacement)

functions induces a singular interior solution of the Levy type. The relevant Levy�s stress components by
themselves do not satisfy the traction free conditions required of state (2) along E. The singular Levy
solution will have to be supplemented by additional Levy solutions of the type induced by the general
bounded transverse displacement wðr; hÞ in the form of Eq. (10) as well as decaying solution components to
meet the free edge requirements. We denote the resulting state (2) by fRS ;USg and the singular portion of
these (2) states by fr�; u�g with � ¼ kc; k0c; ks or k0s where k0 ¼ k � 2, depending on our choice of the
generating singular mid-plane transverse displacement. In that case, the reciprocal relation (14) may be

written as
Z Z
E
f�rrnnUS

n þ �rrntUS
t þ �rrnzUS

z gdS ¼
Z Z

Eq

f½rrrUS
r þ rrhUS

h þ rrzUS
z � � ½urRS

rr þ uhR
S
rh þ uzRS

rh�gdS

ð17Þ
This form of the reciprocal relation also applies to k ¼ 1 though two families of the ‘‘singular’’ solutions
in (15) corresponding k0 are no longer singular for this case. They correspond to rigid body rotations and
give rise to no stresses throughout the plate, qualifying them for (2) states without any adjustment by

supplementary decaying states and bounded interior states. The special case of k ¼ 0 will be discussed in the
next section.
One other requirement will have to be imposed on state (2) for our method of solution. All (2) states

should be a regular elastostatic state as defined in the previous section so that its displacement and stress

fields have at worst an algebraic growth as h ! 0. We now summarize the specification of state (2) as follows:

• It satisfies the homogeneous governing equations of three-dimensional theory of elasticity in the same

plate domain as state (1) (taken to be the solution of our original problem).

• It is stress free on the two faces.

• It is stress free along the edge E.
• It has at most one singularity at a minimum distance d away from the edge E large compared to the plate
thickness.

• It is a regular elastostatic state with at worst an algebraic growth as h ! 0.
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With the circular hole r ¼ q far away from the edge E, i.e., h � d, the decaying solution components of
both state (1) and state (2) are exponentially small for r6q. Both states being also regular states, each is
equal to its interior solution component (including the singular component) except for exponentially small

terms (EST). Furthermore, for a very small hole, the singular portion dominates the interior component of
the (2) state. Altogether, the reciprocal relation (17) simplifies to
Z Z

E
f�rrnnUS

n þ �rrntUS
t þ �rrnzUS

z gdS

¼
Z h

�h

Z 2p

0

f½ðrIrrU �
r þ rIrhU

�
h þ rIrzU

�
z Þ � ðuIrR�

rr þ uIhR
�
rh þ uIzR

�
rzÞ�r¼qgqdhdz ð18Þ
Thus, for any of the singular (2) state corresponding to � ¼ kc; k0c; ks or k0s with k ¼ 1; 2; 3; . . ., the Levy
interior solution is related to prescribed stress data along E by the relation (18) except for exponentially
small terms. (As indicated earlier, the k ¼ 0 case will be discussed in the next section.) It might appear that
by replacing (RS ;US) by (R�;U�), there would be an additional error of the order of ðq=dÞm for some m; but
this is not the case as we will show later that the relation (18) is independent of q to the singular (2) states of
interest.
4. Determination of the interior solution

We now make use of the reciprocal relation (18) to determine the Fourier coefficients fak; bk; ck; dkg in the
expansion for wðr; hÞ in (10), and hence Levy�s interior solution for our problem. Let ðR�;U�Þ be the sin-
gular interior state generated by wkcðr; hÞ ¼ r�k cosðkhÞ and ðrI; uIÞ be the Levy interior solution component
of the exact solution of our original problem generated by the general (non-singular) biharmonic function

(10). Orthogonality among the trigonometric functions eliminates all terms on the right-hand side of (18)
except those with a multiplicative factor cosðkhÞ. Since the dependence on z and h are now explicit for both
ðR�;U�Þ and ðrI; uIÞ, we can carry out the integration with respect to both z and h on the right-hand side of
(18) giving us one relation between ak and bk. A second relation for ak and bk can be obtained by using the
other singular solution wk0cðr; hÞ ¼ r�kþ2 cosðkhÞ, i.e., with � ¼ k0c. Together they determine ak and bk since
the ðRS ;USÞ states associated with wkc and wk0c needed on the left-hand side of (18) are known.

With the help symbolic manipulation software (e.g., Maple), the rather involved calculations on the

right-hand side of (18) were carried out quickly and error free. It turns out that for � ¼ kc, corresponding to
the first generating function in (15), the reciprocal relation (18), which is exact up to EST, is independent of
q, the radius of the fictitious circular hole. Furthermore, it is a relation for bk alone:
Z Z

E
f�rrnnUS

n þ �rrntUS
t þ �rrnzUS

z g�¼kc dS ¼ �8pDkðk þ 1Þbk ð19Þ
where D ¼ 2Eh3=3ðl� m2Þ is the bending stiffness factor of the plate (with the factor 2/3 changed to the more

familiar 1/12 if plate thickness is changed from 2h to h).
The second relation obtained with � ¼ k0c, corresponding to the first generating function in (16), is also

independent of q but now involved both ak and bk:
Z Z
E
f�rrnnUS

n þ �rrntUS
t þ �rrnzUS

z g�¼k0c dS ¼ 8pDkðk � 1Þ ak

�
þ bk

4ð4þ mÞðk þ 1Þh2
5ð1� mÞ

�
ð20Þ
The contribution of the bk term in the relation above is small of order ðh=dÞ2 and may be neglected for a
moderately thick plate theory (with an error of the same order).
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The fact that the right-hand side of the reciprocal relation (18) is independent of q for both � ¼ kc and
k0c implies that the relations (18)–(20) all hold for all q ð6 dÞ, in particular for q ¼ 0. For this choice of q,
the bounded portion of the Levy solution in ðRS ;USÞ is absent and the replacement of the singular state
ðRS ;USÞ in the relation (17) by ðR�;U�Þ maintains the same accuracy (which is exact up to EST) as that
when only the decaying state components are omitted.

The formulas (19) and (20) and the corresponding formulas for ck and dk (obtained by setting � ¼ ks and
k0s) completely determine the Levy solution for the original stress boundary value problem without

simultaneously determining the boundary layer solution components. It should be clear from the solution

process that the same method for finding the Fourier coefficients of the biharmonic generating function w
(10) of the relevant Levy solution applies to other set of admissible edge conditions as well. The only

modification consists of changing the edge conditions for state (2) at E to the homogeneous counterpart of
the actual prescribed edge conditions. If all edge conditions of the actual problem are given in terms of the
displacement components, then all displacement components of state (2) should vanish along E in order for
the left-hand side of the relevant reciprocal relation corresponding to (14) to be in terms of the prescribed

displacement data and the known singular state (2). In this paper, we will focus only on the case where all

the edge conditions are prescribed in terms of the stress components.

Except for cases involving a rigid body displacement field, the construction of a singular (2) state,

ðRS ;USÞ, generally requires the use of the boundary layer solution components in order for it to satisfy the
stress free conditions along E. However, such a singular state (2) is a canonical problem to be solved only
once and the result applies to all stress boundary value problems for the same plate whatever the actual
prescribed edge stress distributions may be. It can be generated numerically if necessary as long as the

numerical solution is accurate to the same order of accuracy as the plate theory, i.e., the truncated outer

asymptotic solution, used. As we shall see in the next two sections, it is possible, for a few classes of stress

boundary value problems, to circumvent the the inclusion of the boundary layer solution components in

ðRS ;USÞ either completely (as in Section 5) or for a (Kirchhoff type) thin plate approximation (see Section 6).
5. Axisymmetric deformation of a circular plate

For solutions single-valued in h, the two singular biharmonic functions for mid-plane transverse dis-
placement for the k ¼ 0 case are
w0ðrÞ ¼ lnðrÞ; w0
0 ðrÞ ¼ r2 lnðrÞ ð21Þ
while the corresponding generating function for the general non-singular axisymmetric Levy interior

solution wðrÞ is as given by the n ¼ 0 portion of Eq. (10):

w0 ¼ a0 þ b0r2 ð22Þ
Note that the terms associated with the Fourier coefficient a0 corresponds to a rigid body vertical trans-
lation and therefore gives rise to no stresses throughout the plate. A unit vertical translation may be used as

a (2) state in the reciprocal theorem as it satisfies all the conditions specifying a (2) state in Section 3. For
such a (2) state, the reciprocal relation (18) for the case of a circular edge of radius a simplifies to
Z 2p

0

Z h

�h
f�rrrs � 1gadzdh ¼

Z h

�h

Z 2p

0

frIrz � 1gr¼qqdhdz ð23Þ
or, since rIrz ¼ 0 for the Levy solution generated by Eq. (22),
2pa
Z h

�h
�rrrz dz � 2paQr ¼ 0 ð24Þ
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The condition (24) is just the requirement that the prescribed transverse shear stress distribution along the

plate edge must have no resultant axial force so that the plate is in overall equilibrium. Otherwise, there is

no other applied load to balance the axial force.

Parenthetically, we note that a non-self-equilibrating distribution of �rrrz that generates a resultant axial
force must be balanced by an equal and opposite axial force in the interior of the plate (such as that due to a

distribution of axisymmetric transverse edge shear at an inner edge or a point force at the center of the

circular plate). For the case of a concentrated load at the origin, the Levy solution for w0 now includes a
singular term b00 lnðrÞ. The rigid body displacement (2) state in (23) now determines the Fourier coefficient
b00 :
b00 ¼
aQr

4D
ð25Þ
Returning to the original problem with a bounded interior solution generated by (22), another (2) state

that determines b0 by way of (18) is obtained with the first generating function w0ðrÞ ¼ lnðrÞ in (21). For this
singular generating function, the relevant stress and displacement components of the Levy solution are
RS
rr ¼ E

z
a
1

�
� a2

r2

�
; RS

rh ¼ RS
rz ¼ 0 ð26Þ
US
r ¼ z ð1

h
� mÞ r

a
þ ð1þ mÞ a

r

i
; US

h ¼ 0 ð27Þ
US
r ¼ � 1

2

r2

a
ð1� mÞ � ð1þ mÞa ln a

r

� �
� m

z2

r
ð28Þ
With this (2) state, the reciprocal relation (18) for a circular edge of radius a becomes
�2Db0 ¼
Z h

�h
z�rrrr

�
� mz2

2a
�rrrz

�
dz ð29Þ
As with the k > 0 cases, we have now two exact ðRS ;USÞ states for the axisymmetric bending problem.
Both of them do not involve any boundary layer solution components. However, they determine only the

Fourier coefficient b0 but not the rigid body transverse displacement component a0. Such a level of non-
uniqueness is expected when all edge data are prescribed in terms of stresses. In addition to determining b0,
we also recovered the overall equilibrium requirement.

With the following sole non-trivial stress component along the edge r ¼ a generated by the axisymmetric
mid-plane transverse displacement (22),
rIrr ¼ � 2Ez
1� m

b0 ð30Þ
the left-hand side of (29) is just the axisymmetric bending moment resultant (also referred to as the bending

stress couple) Mrr (conventionally defined as zrIrr integrated across the plate thickness) so that the relation
(29) may be written as a boundary condition on the bending moment resultant at the plate edge:
Mrrðr ¼ aÞ ¼
Z h

�h
z�rrrr

�
� mz2

2a
�rrrz

�
dz ð31Þ
An equivalent form of the boundary condition (31), expressed as a necessary condition for the residual

boundary data to induce a boundary layer solution state, was previously obtained in Gregory and Wan
(1985a).
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The two stress boundary conditions (24) and (31) for plate bending resulting from our use of the re-

ciprocal theorem are accurate up to exponentially small terms (because we have replaced frrr; rrzg by
frIrr; rIrzg). It is significant then that the condition (31) on the plate bending moment resultant is not
identical to the conventional condition upon the application of (a modified form of) the Saint Venant
principle (Love, 1944; Timoshenko and Goodier, 1951; Reissner, 1963). (Note that condition (31) coincides

with that obtained by Reiss (1962) if we take �rrrz ¼ 0 as Reiss did in his paper. However, �rrrz needs not vanish

identically even if it should be self-equilibrating.) At the same time, deviation from the conventional

condition consists only of the new term �ðmz2=2aÞ�rrrz; its contribution to the boundary condition is gene-

rally small of order h=a compared to the first term. In other words, the conventional stress boundary
conditions for plate bending is consistent with the Kirchhoff thin plate approximation. But if we wish to

retain the additional accuracy of any higher order plate theory, the condition (31) should be used.

Counter-examples have also been constructed by Gregory and Wan (1985a) to illustrate the appropri-
ateness of condition (31) for higher order plate theories. It was shown there that certain three-dimensional

decaying elastostatic states for the axisymmetric plate bending problem are consistent with (31) but not

with the conventional bending moment condition (corresponding to (31) without the second term). It was

also shown that the residual solution induced by the residual data after an assignment by (31) for the Levy

solution is a decaying state while a similar solution induced by the residual data after an assignment by the

conventional bending moment condition is not.
6. Circular plate with unsymmetric edge stresses

For plate bending without axisymmetry, it is generally not possible to avoid the inclusion of decaying

solution components in the determination of the four relevant (2) states. An important exception is the case

of stress edge conditions in the Kirchhoff thin plate approximation of the Levy interior solution. To elu-

cidate, it suffices to consider a circular plate with edge stresses along the circular boundary depending on
the edge variable h in the form of cosðkhÞ or sinðkhÞ for kP 2 so that they are self-equilibrating. The plate

response to the edge loads will also have the same dependence on h. For the (2) state generated by the first
singular mid-plane displacement of (15), the following three stress components are required to vanish at

r ¼ a:
rkc
rr

cosðkhÞ ¼ � Ez
1� m2

bsk ðk
��

þ 1Þhðk þ 2Þ � mðk � 2Þirk þ 4kðk2 � 1Þrk�2 h2
�

� 2� m
6

z2
��

þ askkðk � 1Þð1� mÞrk�2 þ kðk þ 1Þð1� mÞr�k�2
�
þ r̂rkc

rr ðr; zÞ ð32Þ

rkc
rh

sinðkhÞ ¼
Ez
1þ m

bskkðk
�

þ 1Þ rk
�

þ 4ðk � 1Þ
1� m

rk�2 h2
�

� 2� m
6

z2
��

þ askkðk � 1Þrk�2 � kðk þ 1Þr�k�2
�
þ r̂rkc

rhðr; zÞ ð33Þ

rkc
rz

cosðkhÞ ¼ � 2E
1� m2

ðh2 � z2Þfbskkðk þ 1Þrk�1g þ r̂rkc
rz ðr; zÞ ð34Þ
where r̂rkc
ij ðr; zÞ is the ðr; zÞ-dependent portion of the boundary layer components of rkc

rz . The corresponding

displacement components will be needed for the evaluation of the boundary integrals (19) and (20) for ak
and bk. For our purpose, we will write these expressions in terms of the relevant mid-plane transverse
displacement wkc:
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wkc ¼ faskrk þ bskr
kþ2 þ r�kg cosðkhÞ ð35Þ
with
ukcz ¼ 1

�
þ mz2

2ð1þ mÞr
2

�
wkc þ ûukcz cosðkhÞ

¼ bsk rkþ2

�

þ 2mz2

1� m
ðk þ 1Þrk

�
þ askr

k þ r�k þ ûukcz ðr; zÞ
�
cosðkhÞ ð36Þ

ukcr ¼ � z
1� m

o

or
ð1

�
� mÞ þ h2

�
� 2� m

6
z2
�
r2

�
wkc þ ûukcr cosðkhÞ

¼
�
� z bsk ðk


�
þ 2Þrkþ1 þ 4kðk þ 1Þ

1� m
rk�1 h2

�
� 2� m

6
z2
��

þ askkr
k�1 � kr�k�1

�
þ ûukcr ðr; zÞ

�
cosðkhÞ

ð37Þ

ukch ¼ � z
1� m

1

r
o

oh
ð1

�
� mÞ þ h2

�
� 2� m

6
z2
�
r2

�
wkc þ ûukch sinðkhÞ

¼ z bsk krkþ1

��

þ 4kðk þ 1Þ
1� m

rk�1 h2
�

� 2� m
6

z2
��

þ askkr
k�1 þ kr�k�1

�
þ ûukch ðr; zÞ

�
sinðkhÞ ð38Þ
We know from the asymptotic analyses of Friedrichs and Dressler (1961), Gol�denveizer (1962), Reiss
(1962), Gol�denveizer and Kolos (1965) and others that the decaying components of the above state (2)
displacement fields, fûukcz cosðkhÞ; ûukcr cosðkhÞ; ûukch sinðkhÞg, are at least Oðh=aÞ smaller in magnitude than the
leading term of their interior counterpart fwkc;�zowkc=or;�ðz=rÞowkc=ohg. Roughly, because state (2) is
stress free along E with rkc

ryða; h; zÞ ¼ 0, for y ¼ r; h, and z, the decaying components fr̂rkc
rr ; r̂r

kc
rh; r̂r

kc
rzg in (32)–

(34) are of the same order of magnitude as their interior counterpart. Now stresses are obtained by dif-

ferentiating the displacement fields and differentiation does not change the order of magnitude of the

interior solution components but increases the magnitude of the decaying components by a factor pro-

portional to a=h. Therefore, we have except for terms of the order of h=a,
ukcz � wkc ¼ faskrk þ bskr
kþ2 þ r�kg cosðkhÞ ð39Þ

ukcr � �z
o

or
wkc ¼ �zfaskkrk�1 þ bskðk þ 2Þrkþ1 � kr�k�1g cosðkhÞ ð40Þ

ukch � � z
r
o

or
wkc ¼ kzfask0rk�1 þ bsk0r

kþ1 þ r�k�1g sinðkhÞ ð41Þ
Upon substituting these asymptotic expressions into (19), we obtained the following leading term ap-

proximation for the Fourier coefficient bk of the Levy solution of our original stress boundary value
problem:
�8pDkðk þ 1Þbk ¼
Z 2p

0

Z h

�h
½�rrrrUkc

r þ �rrrhUkc
h þ �rrrzUkc

z �r¼aadzdh

�
Z 2p

0

�
�Mrr

owkc

or
�Mrh

1

r
owkc

oh
þ Qrw

kc

�
r¼a

adh ð42Þ
Keeping in mind that the prescribed stresses are proportional to cosðkhÞ or sinðkhÞ for kP 2,
f�rrrrðh; zÞ; �rrrzðh; zÞg ¼ f�rrk
rrðzÞ; �rrk

rzðzÞg cosðkhÞ; �rrrhðh; zÞ ¼ �rrk
rhðzÞ sinðhÞ ð43Þ
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we can integrate the right-hand side of the expression for bk to get
bk �
a

8Dkðk þ 1Þ M
k
rr

dŵwkc

dr

"
� V

k
r ŵw

kc

#
r¼a

ð44Þ
where
wkcðr; hÞ ¼ ŵwkcðrÞ cosðkhÞ; Vr ¼ Qr þ
1

r
oMrh

oh
ð45Þ

fMk
rr;M

k
rhg ¼

Z h

�h
f�rrk

rrðzÞ; �rrk
rhðzÞgzdz; Q

k
r ¼

Z h

�h
�rrk
rzðzÞdz ð46Þ
Similarly, we have from the first generating function in (16)
uk
0c
z � wk0c ¼ fask0rk þ bsk0r

kþ2 þ r�kþ2g cosðkhÞ ð47Þ

uk
0c
r � �z

o

or
wk0c ¼ �zfask0krk�1 þ bsk0 ðk þ 2Þrkþ1 � ðk � 2Þr�k�1g cosðkhÞ ð48Þ

uk
0c

h � � z
r
o

oh
wk0c ¼ kzfask0rk�1 þ bsk0r

kþ1 þ r�k�1g sinðkhÞ ð49Þ
To a leading term asymptotic approximation, we get from (20)
ak �
a

8Dkðk � 1Þ V
k
r ŵw

k0c

2
4 �M

k
rr

dŵwk0c

dr

3
5

r¼a

ð50Þ
where we have omitted the bk term on the left-hand side of (20) because it is Oðh2=a2Þ compared to the
dominant terms in the same equation. With ak and bk given by (44) and (50), we have now the interior
stresses and displacements in terms of the prescribed edge loads at least to a leading term approximation

(equivalent to a Kirchhoff type theory). This was accomplished without doing any calculations that involve
the decaying components of the exact solution.
7. Kirchhoff’s contracted stress boundary conditions

The leading term of the Levy solution for our plate problem is now seen from the expression for the

Fourier coefficients ak and bk, (44) and (50), to depend only on the bending moment resultant Mrr and

the effective transverse shear resultant V r (see (45)) just as the solution of Kirchhoff �s thin plate theory. At
the same time, the contraction of the prescribed stresses of the problem to two resultant quantities as

proposed by Kirchhoff occurs naturally in the solution process. However, we cannot yet conclude that the

stress boundary conditions for a leading term Levy solution are in fact the same as those in the conven-

tional thin plate theory.

Suppose we compute from the Levy solution the corresponding moment resultants and transverse shear

resultant which appear in conventional two-dimensional plate theories. For a leading term asymptotic

approximation, we have
Mrr ¼
Z h

�h
rIrrzdz � �Dfakkðk � 1Þð1� mÞrk�2 þ bkðk þ 1Þ½ðk þ 2Þ � mðk � 2Þ�rkg cosðkhÞ ð51Þ
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Mrh ¼
Z h

�h
rIrhzdz � Dð1� mÞfakkðk � 1Þrk�2 þ bkkðk þ 1Þrkg sinðkhÞ ð52Þ

Qr ¼
Z h

�h
rIrz dz � �4Dbkkðk þ 1Þrk�1 cosðkhÞ ð53Þ
We now use (44) and (50) to express the Fourier coefficients ak and bk of the interior solution of our original
problem in terms of the prescribed boundary data to get to a leading term approximation
Mrrða; hÞ
ak�1 cosðkhÞ=8k ¼ M

k
rr kð1

2
4 � mÞ dŵw

k0c

dr
� fðk þ 2Þ � mðk � 2Þga2 dŵw

kc

dr

3
5

r¼a

� V
k
r ½kð1� mÞŵwk0c � fðk þ 2Þ � mðk � 2Þga2ŵwkc�r¼a ð54Þ

Vrða; hÞ
ak�2 cosðkhÞ=8 ¼ V

k
r ½kð1� mÞŵwk0c þ ð4� k þ kmÞa2ŵwkc�r¼a

�M
k
rr kð1

2
4 � mÞ dŵw

k0c

dr
þ ð4� k þ kmÞa2 dŵw

kc

dr

3
5

r¼a

ð55Þ
In general, the value of the bending moment resultant and the transverse shear resultant at the edge r ¼ a
of the circular plate would depend on both M

k
rr and V

k
r . In order to have these relations identical to the two

Kirchhoff contracted stress boundary conditions, we need to have
½kð1� mÞŵwk0c � fðk þ 2Þ � mðk � 2Þga2ŵwkc�r¼a ¼ 0 ð56Þ

kð1

2
4 � mÞ dŵw

k0c

dr
þ ð4� k þ kmÞa2 dŵw

kc

dr

3
5

r¼a

¼ 0 ð57Þ

kð1

2
4 � mÞ dŵw

k0c

dr
fðk þ 2Þ � mðk � 2Þga2 dŵw

kc

dr

3
5

r¼a

¼ 8ka1�k ð58Þ

½kð1� mÞŵwk0c þ ð4� k þ kmÞa2ŵwkc�r¼a ¼ 8a2�k ð59Þ
with ŵwkc and ŵwk0c given in (35) and (47), respectively. To evaluate the left-hand side of these four relations,

we need to know the coefficients fask; bsk; ask0 ; bsk0 g in ŵwkc and ŵwk0c (see (35) and (47)). Unfortunately, the

determination of these coefficients is generally done simultaneously with the unknown coefficients in the

eigenfunction expansions for the decaying solution components by the stress free conditions
rkc
rr ða; h; zÞ ¼ rkc

rhða; h; zÞ ¼ rkc
rz ða; h; zÞ ¼ 0 ð60Þ

rk0c
rr ða; h; zÞ ¼ rk0c

rh ða; h; zÞ ¼ rk0c
rz ða; h; zÞ ¼ 0 ð61Þ
Given the completeness of the eigenfunctions associated with the decaying state components, we may

assign certain values to ask and bsk for instance and then choose the Fourier coefficients in the decaying
solution components to satisfy (60). However, the assigned values must be such that they do not violate the
relative magnitude of the various stress components (found in various asymptotic analyses such as those
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referenced earlier). For example, it might appear reasonable to take ask and bsk to satisfy rkc
rr ða; h; zÞ ¼

rkc
rhða; h; zÞ ¼ 0 to leading order so that
rkc
rr ða; h; zÞ
cosðkhÞ � � Ez

1þ m2
fbskbka

k þ askkðk � 1Þak�2 þ kðk þ 1Þa�k�2g ¼ 0 ð62Þ
rkc
rhða; h; zÞ
sinðkhÞ � Ez

1þ m
fbskkðk þ 1Þak þ askkðk � 1Þak�2 � kðk þ 1Þa�k�2g ¼ 0 ð63Þ
where bk ¼ ðk þ 1Þ½ðk þ 2Þ � mðk � 2Þ�=ð1� mÞ, leaving the decaying components to absorb the residuals in
rkc
rr ða; h; zÞ and rkc

rhða; h; zÞ and to ensure rkc
rz ða; h; zÞ ¼ 0. But this would make r̂rkc

rr and r̂rkc
rh of order h

3=a3 while
r̂rkc
rz remains Oðh2=a2Þ. This relative order of magnitude between the decaying components of both the
transverse shear stress and the in-plane stresses is not consistent with the requirement of the differential

equations of equilibrium and is therefore unacceptable. An acceptable assignment would be to require the

two Kirchhoff contracted resultants to vanish (with the decaying components absorbing the residuals). The

two conditions Mkc
rr ða; hÞ ¼ V kc

r ða; hÞ ¼ 0 require:
�aaskkðk � 1Þak�2 þ �bbsk
k þ 1
1� m

½ðk þ 2Þ � mðk � 2Þ�ak þ kðk þ 1Þa�k ¼ 0 ð64Þ
�aaskkðk � 1Þak�2 � �bbskðk þ 1Þ½4� kð1� mÞ�ak þ kðk þ 1Þa�k ¼ 0 ð65Þ
giving
ask � �aask ¼
1� m
3þ m

ðk þ 1Þa�2k; bsk � �bbsk ¼ � 1� m
3þ m

ka�2k�2 ð66Þ
and therewith
ŵwkc ¼ 4

3þ m
a�k;

d

dr
ŵwkc ¼ � 4k

3þ m
a�k�1: ð67Þ
Similarly, we have from Mk0c
rr ða; hÞ ¼ V k0c

r ða; hÞ ¼ 0
�aask0kðk � 1Þak�2 þ �bbsk0
k þ 1
1� m

½ðk þ 2Þ � mðk � 2Þ�ak þ kðk þ 1Þa�k ¼ 0 ð68Þ
�aask0kðk � 1Þak�2 � �bbsk0 ðk þ 1Þ½4� kð1� mÞ�ak � kðk þ 1Þa�k ¼ 0 ð69Þ
requiring
ask0 � �aask0 ¼
k2ð1� mÞ2 þ 8ð1þ mÞ

kð3þ mÞð1� mÞ a�2kþ2; bsk0 � �bbsk0 ¼ � 1� m
3þ m

ðk � 1Þa�2k ð70Þ
and therewith
ŵwk0c ¼ 4½kð1� mÞ þ 2ð1þ mÞ�
kð3þ mÞð1� mÞ a�kþ2;

dŵwk0c

dr
¼ � 4½kð1� mÞ � 4�

ð3þ mÞð1� mÞ a
�kþ1 ð71Þ
Note that our choice of fask; bsk; ask0 ; bsk0 g by way of (64)–(69) does not alter the fact that RS
rr, R

S
rh and RS

rz (for S
corresponding to both k and k0) all vanish at the plate edge as required by the specification of a (2) state; this
is ensured by an appropriate choice of the decaying solution components for these singular states. Hence

there is no new error accrued for this step in our method.
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It is then straightforward to verify that the four desired relations (56)–(59) are in fact satisfied identically,

and the conventional Kirchhoff contracted stress boundary conditions in fact apply to the leading term

Levy interior solution:
Mrrða; hÞ ¼ M
k
rr cosðkhÞ; Vrða; hÞ ¼ V

k
r cosðkhÞ ð72Þ
We see then that the Kirchhoff contracted boundary conditions are in fact consistent with a leading term

outer solution of the plate bending problem (known more conventionally as the Kirchhoff thin plate

theory), at least for a circular plate with edge stresses proportional to cosðkhÞ and sinðkhÞ for an integer k
(with the special cases of k ¼ 0 and k ¼ 1 requiring special treatment described earlier). The corresponding
results for a circular plate with general edge loads follow immediately after a Fourier decomposition.

However, we learned in Section 5 that the conventionally accepted stress boundary conditions for (the

Kirchhoff theory of) plate bending may not be adequate for higher order plate theories. In the development

above leading to the contracted boundary conditions (72), terms of order h=a have been omitted repeatedly,
starting with the replacement of the exact singular (2) states fUkc

z ;Ukc
r ;Ukc

h g by fwkc; owkc=or; r�1owkc=ohg in
(42). Hence, higher order accuracy in h=a offered by higher order plate equations may well be lost if the
same contracted stress boundary conditions should be used for these higher order equations.
8. Concluding remarks

While the validity of the Kirchhoff contracted stress boundary conditions for the leading term (thin)

plate theory has been established only for circular plate, much of the analysis above carries over to plates
with an arbitrary (but simple) smooth edge and plates with more than one edge. An asymptotic expression

for bk similar to (42) but for a general smooth edge can be obtained in a similar development:
�8pDkðk þ 1Þbk ¼
Z Z

E
½�rrnnUkc

n þ �rrntUkc
t þ �rrnzUkc

z �dS

�
Z

C

�
�Mnn

owkc

on
�Mnt

owkc

os
wkc þ Qnw

kc

�
ds ð73Þ
where o=on and o=os are differentiation in direction normal and tangent to the edge curve C, respectively.
Upon integration by parts and assuming all stress and displacement components are single-valued, we get
�8pDkðk þ 1Þbk �
I

C

�
�Mnn

owkc

on
þ V nwkc

�
ds ð74Þ
where
fMnn;Mntg ¼
Z h

�h
f�rrnnðs; zÞ; �rrntðs; zÞgzdz; Qn ¼

Z h

�h
�rrnzðs; zÞdz
with the effective transverse shear resultant V n is given by V n ¼ Qn þ ðo=osÞMnt. A corresponding expres-
sion for ak is
8pDkðk þ 1Þak �
I

C

"
�Mnn

owk0c

on
þ V nwk0c

#
ds ð75Þ
Even without going beyond the expressions for ak and bk, it should be evident from (75) and (74) that the
leading term Levy (or Kirchhoff thin plate theory) solution is effectively determined by the bending moment
resultant Mnn and the effective transverse shear resultant V n of the three prescribed edge stress components

f�rrnn; �rrnt; �rrnzg, only these two edge resultant measures and no others. At the same time, the Kirchhoff
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contracted stress boundary conditions are not likely to be adequate for higher order plate theories, while

the conditions (19) and (20) are always applicable. The possible inadequacy of the Kirchhoff contracted

conditions for higher order interior (or outer) solutions has been known since the asymptotic results of

Friedrichs and Dressler (1961) and Gol�denveizer (1962). However, unlike these and similar subsequent
asymptotic analyses, the solutions (19) and (20) and more generally the approach initiated in Gregory and

Wan (1985a) make it possible to avoid solving boundary value problems associated with the boundary layer

components of the exact solution.
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